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Constant-Cutoff Approach to A (1405) Resonance 
in the Bound-State Soliton Model 

Niis Da larsson  1 

Received September 19, 1995 

We suggest a quantum stabilization method for the SU(2) g-model, based on the 
constant-cutoff limit of the cutoff quantization method developed by Balakrishna 
et al., which avoids the difficulties with the usual soliton boundary conditions 
pointed out by Iwasaki and Ohyama. We investigate the baryon number B = 1 
sector of the model and show that after the collective coordinate quantization it 
admits a stable soliton solution which depends on a single dimensional arbitrary 
constant. We then study strong and electromagnetic properties of the A(1405) 
hyperon in the bound-state approach to the SU(3)-soliton model for the hyperons, 
with SU(3)-symmetry breaking. We calculate the strong coupling constant gA*~r, 
the magnetic moment of A*, the mean square radii, and the radiative decay 
amplitudes. Finally we compare the present results with those obtained using 
other models and with the available empirical data. We show that there is a 
general qualitative agreement between our results and the results of other models 
and available empirical data, except for the A*'rrE coupling, which, as in the 
case of the complete Skyrme model, vanishes in the second-order approximation 
of the kaon fluctuations used in this work. 

1. I N T R O D U C T I O N  

It was shown by Skyrme (1961, 1962) that baryons can be treated as 
solitons of a nonlinear chiral theory. The original Lagrangian of the chiral 
SU(2) tr-model is 

= ~ Tr O~U O~U ÷ (1.1) 
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where 

U = (o- + i ' r -~)  (1.2) 

is a unitary operator (UU ÷ = 1) and F~ is the pion-decay constant. In (1.2) 
c = c(r)  is a scalar meson field and ~r = ~(r)  is the pion isotriplet. 

The classical stability of the soliton solution to the chiral c-model 
Lagrangian requires an additional ad hoc term, proposed by Skyrme (1961, 
1962), to be added to (1.1): 

~sk = 1 Tr[U+3~,U, U*3~U] 2 (1.3) 
32e -~ 

with a dimensionless parameter e and where [A, B] = AB - BA. It was 
shown by several authors [e.g., Adkins et al. (1983); see also Witten (1979, 
1983a,b); for an extensive list of references see Holzwarth and Schwesinger 
(1986) and Nyman and Riska (1990)] that, after collective quantization using 
the spherically symmetric ansatz 

U0(r) = exp[i'r-roF(r)], ro = r/r (1.4) 

the chiral model, with both (1.1) and (1.3) included, gives good agreement 
with experiment for several important physical quantities. Thus it should be 
possible to derive the effective chiral Lagrangian, obtained as a sum of (1.1) 
and (1.3), from a more fundamental theory like QCD. On the other hand, it 
is not easy to generate a term like (1.3) and give a clear physical meaning 
to the dimensionless constant e in (1.3) using QCD. 

Mignaco and Wulck (1989) (MW) indicated the possibility of  building 
a stable single-baryon (n = 1) quantum state in the simple chiral theory with 
the Skyrme stabilizing term (1.3) omitted. They showed that the chiral angle 
F(r) is in fact a function of a dimensionless variable s = ½X"(0)r, where ×"(0) 
is an arbitrary dimensional parameter intimately connected to the usual 
stability argument against the soliton solution for the nonlinear c-model 
Lagrangian. 

Using the adiabatically rotated ansatz U(r, t) = A(t)Uo(r)A+(t), where 
Uo(r) is given by (1.4), MW obtained the total energy of the nonlinear 
c-model soliton in the form 

"rr 1 
E = - ~ F 2 ~ a  + 

1 [x"(0 ) ]  3 

2 (~r/4)F~b 
J(J + 1) (1.5) 
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where 

a \ ds ] + 8 sin z ~ ds (1.6) 

f0 o b = ds -~- sin 2 

and ~(s)  is defined by 

1 
F(r) = F(s) = -n~r + -~ ~(s) (1.8) 

The stable minimum of  the function ( 1.5) with respect to the arbitrary dimen- 
sional scale parameter ×"(0) is 

4 ],4 
E = - ~ F ~  -~J(J  + 1) (1.9) 

Despite the nonexistence of  the stable classical soliton solution to the 
nonlinear cr-model, it is possible, after collective coordinate quantization, to 
build a stable chiral soliton at the quantum level, provided that there is a 
solution F = F(r) which satisfies the soliton boundary conditions, i.e., F(0) 
= -n ' tr ,  F(~)  = 0, such that the integrals (1.6) and (1.7) exist. 

However, as pointed out by Iwasaki and Ohyama (1989), the quantum 
stabilization method in the form proposed by MW is not correct since in the 
simple or-model the conditions F(0) = -nTr  and F(oz) = 0 cannot be satisfied 
simultaneously. In other words, if the condition F(0) = -~r  is satisfied, 
Iwasaki and Ohyama obtained numerically F(oo) ~ --rr/2, and the chiral 
phase F = F(r) with correct boundary conditions does not exist. 

Iwasaki and Ohyama also proved analytically that both boundary condi- 
tions F(0) = -n-tr and F(cz) = 0 cannot be satisfied simultaneously. Introduc- 
ing a new variable y = llr into the differential equation for the chiral angle 
F = F(r), we obtain 

dZF 1 
- -  - sin 2F  (1.10) dy2 y2 

There are two kinds of  asymptotic solutions to equation (1.I0) around the 
point y = 0, which is called a regular singular point if sin 2F ~ 2F. These 
solutions are 

F(y) = m___y_~ + cy2 m = even integer (1.11) 
2 

m ~ r + , f ~ c o s [ ~ l n ( c y ) + c x ]  m = odd integer (1.12) F ( y ) =  2 
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where c is an arbitrary constant and c~ is a constant to be chosen adequately. 
When F(0) = - n r r  then we want to know which of  these two solutions are 
approached by F(y) when y ---) 0 (r ---) ~). In order to answer that question 
we multiply (1.10) by y2F'(y), integrate with respect to y from y to oo, and 
use F(0) = -n'rr.  Thus we get 

y2F'(y) + 2y[F'(y)]2dy = 1 - cos[2F(y)] (1.13) 

Since the left-hand side of (1.13) is always positive, the value of F(y) is 
always limited to the interval n~ - ~r < F(y) < n'rr + "rr. Taking the limit 
y --* 0, we find that (1.13) is reduced to 

o°2y[F'(y)] dy = 1 - ( - 1 )  m ( t .14)  

where we used (1.11)-(1.12). Since the left-hand side of (1.14) is strictly 
positive, we must choose an odd integer m. Thus the solution satisfying F(0) 
= -n~r  approaches (1.12) and we have F(~) ~ 0. The behavior of the 
solution (1.1 I) in the asymptotic region y --) ~ (r  --~ 0) is investigated by 
multiplying (1.10) by F'(y), integrating from 0 to y, and using (1.I 1). The 
result is 

[F,(y)l 2 _ 2 sin2F(y) I0' 2 sin2F(y) 
y2 + y3 dy (1.15) 

From (1.15) we see that F'(y) --* const as y --~ ~,  which means that F(r) ~-- 
llr for r -~ 0. This solution has a singularity at the origin and cannot satisfy 
the usual boundary condition F(0) = -n'rr.  

In Dalarsson (1991a, b, 1992) I suggested a method to resolve this diffi- 
culty by introducing a radial modification phase ~p = ~p(r) in the ansatz (1.4), 
as follows: 

U(r) = exp[iT,roF(r) + itp(r)], ro = rlr (1.16) 

Such a method provides a stable chiral quantum soliton, but the resulting 
model is an entirely noncovariant chiral model, different from the original 
chiral cr-model. 

In the present paper we use the constant-cutoff limit of the cutoff quanti- 
zation method developed by Balakrishna et al. (1991; see also Jain et al., 
1989) to construct a stable chiral quantum soliton within the original chiral 
cr-model. Then we apply this method to study strong and electromagnetic 
properties of  the A(1405) hyperon in the bound-state approach to the SU(3)- 
soliton model for the hyperons, with SU(3)-symmetry breaking. Thus we 
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calculate the strong coupling constant gA*NK, the magnetic moment of A*, 
the mean square radii, and the radiative decay amplitudes. Finally we compare 
the present results with those obtained using the complete Skyrme model 
(Schat et al., 1995), quark model (QM) (Darewych et al., 1983), MIT bag 
model (BM) (Kaxiras et al., 1985), and cloudy bag model (CBM) (Umino 
and Myhrer, 1991) and with the available empirical analysis of kaonic atom 
decays (KA) (Burkhardt and Lowe, 1991). We show that there is a general 
qualitative agreement between our results and the results of other models 
and available empirical data, except for the A*'rrX coupling, which, as in the 
case of the complete Skyrme model, vanishes in the second-order approxima- 
tion of the kaon fluctuations used in this work. 

The reason why the cutoff approach to the problem of the chiral quantum 
soliton works is connected to the fact that the solution F = F(r) which 
satisfies the boundary condition F(~) = 0 is singular at r = 0. From the 
physical point of view the chiral quantum model is not applicable to the 
region about the origin, since in that region there is a quark-dominated bag 
of the soliton. 

However, as argued in Balakrishna et al. (1991), when a cutoff ¢ is 
introduced, the boundary conditions F(¢) = -nxr and F(oo) = 0 can be 
satisfied. Balakrishna et al. (1991) discussed an interesting analogy with the 
damped pendulum, showing clearly that as long as ( > 0, there is a chiral 
phase F = F(r) satisfying the above boundary conditions. The asymptotic 
forms of such a solution are given by equation (2.2) in Balakrishna et aL 
(1991). From these asymptotic solutions we immediately see that for ~ ---> 0 
the chiral phase diverges at the lower limit. 

Different applications of the constant-cutoff approach have been dis- 
cussed in Dalarsson (1993, 1995a-c). 

2. CONSTANT-CUTOFF STABILIZATION 

Substituting (1.4) into (1.1), we obtain for the static energy of the 
chiral baryon 

1r If° [ ( dF~2+2s in2F  ] (2.1) Eo = "~ F~ dr r 2 
I 

In (2. l) we avoid the singularity of the profile function F = F(r) at the origin 
by introducing the cutoff ¢(t) at the lower boundary of the space interval 
r • [0, o~], i.e., by working with the interval r • [¢, ~]. The cutoff itself 
is introduced, following Balakrishna et al. (1991), as a dynamic time- 
dependent variable. 
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From (2. I) we obtain the following differential equation for the profile 
function F = F(r): 

dr  r2 = sin 2F  (2.2) 

with the boundary conditions F(~) = - ~  and F(~)  = 0, such that the correct 
soliton number is obtained. The profile function F = F[r; ~(t)] now depends 
implicitly on time t through e(t). Thus in the nonlinear (r-model Lagrangian 

p:f 
L = 16 J Tr(0~U O~U ÷) d3r (2.3) 

we use the ans~tze 

U(r, t) = A(t)Uo(r, t)A÷(t), U÷(r, t) = A( t )Ug(r ,  t)A÷(t) (2.4) 

where 

U0(r, t) = exp{i'r, roF[r; e(t)] } (2.5) 

The static part of  the Lagrangian (2.3), i.e., 

L = 16 ) Tr(VU. VU ÷) d3r = - E o  (2.6) 

is equal to minus the energy E0 given by (2.1). The kinetic part of  the 
Lagrangian is obtained using (2.4) with (2.5) and it is equal to 

L = - ~  Tr(00U OoU ÷) d3r = bx 2 Tr[00A OoA÷l + c[X(t)l 2 (2.7) 

where 

b = -~- F~ sin2F y2 dy, c = ~ F~ y2 y2 dy (2.8) 

with x(t) = [~(t)] 3n and y = r/~. On the other hand, the static energy functional 
(2.1) can be rewritten as 

+ E 0 = a x  2~3, a = -~ X~ l_ \-~Y} 

Thus the total Lagrangian of  the rotating soliton is given by 

L = cYc z - ax  ~3 + Zbx26t~6L~ (2.10) 

where Tr(00A a0 A+) = 26~,6~" and a~ (v = 0, 1, 2, 3) are the collective 
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coordinates defined as in Bhaduri (1988). In the limit of  a time-independent 
cutoff (:t ~ 0) we can write 

1 
H = O6z ~ O--L ~t ~ - L = ax  2/3 + 2bx26zv(x ~ = a x  2/3 + ~ J ( J  + 1) 

(2.11) 

where (j2) = j ( j  + I) is the eigenvalue of the square of the soliton angular 
momentum. A minimum of (2. I 1) with respect to the parameter x is reached at 

ab  ~ - l  = ab  (2.12) 
x = J ( J +  l ) J  ~ J ( J +  I) 

The energy obtained by substituting (2.12) into (2.11) is given by 

4 [ 3  ]1/4 
E = + 1)] (2.13) 

This result is identical to the result obtained by Mignaco and Wulck, which 
is easily seen if we rescale the integrals a and b in such a way that a --~ 
(Tr/4)F~zz and b ---> (Tr/4)F~b and introduce f~ = 2-3/2F~. However, in the 
present approach, as shown in Balakrishna et  al. (1991), there is a profile 
function F = F ( y )  with proper soliton boundary conditions F(1) = - 'rr and 
F(oo) = 0 and the integrals a, b, and c in (2.9)-(2.10) exist and are shown 
in Balakrishna et  al. (1991) to be a = 0.78 GeV 2, b = 0.91 GeV 1, and c = 
1.46 GeV 2 for F~ = 186 MeV. 

Using (2.13), we obtain the same prediction for the mass ratio of the 
lowest states as Mignaco and Wulck (1989), which agrees rather well with 
the empirical mass ratio for the A resonance and the nucleon. Furthermore, 
using the calculated values for the integrals a and b, we obtain the nucleon 
mass M(N) = 1167 MeV, which is about 25% higher than the empirical value 
of 939 MeV. However, if we choose the pion-decay constant equal to F~ = 
150 MeV, we obtain a = 0.507 GeV 2 and b = 0.592 GeV 2, giving exact 
agreement with the empirical nucleon mass. 

Finally it is of interest to know how large the constant cutoffs are for 
the above values of the pion-decay constant in order to check if they are in 
the physically acceptable ballpark. Using (2.12), it is easily shown that for 
the nucleons (J = 1/2) the cutoffs are equal to 

f0.22 fm for F~ = 186 MeV 
(2.14) 

= ~ [0.27 fm for F~ = 150 MeV 

From (2.14) we see that the cutoffs are too small to agree with the size of 
the nucleon (0.72 fm), as we should expect, since the cutoffs rather indicate 
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the size of the quark-dominated bag in the center of the nucleon. Thus we 
find that the cutoffs are of reasonable physical size. Since the cutoff is 
proportional to Fff ~, we see that the pion-decay constant must be less than 
57 MeV in order to obtain a cutoff which exceeds the size of the nucleon. Such 
values of pion-decay constant are not relevant to any physical phenomena. 

3.  T H E  SU(3)-EXTENDED CONSTANT-CUTOFF MODEL 

3 .1 .  T h e  E f f e c t i v e  I n t e r a c t i o n  

The Lagrangian density for the bound-state model of hyperons is given 
by, with Skyrme stabilizing term omitted (Dalarasson, 1993, 1995a-c; Callan 
and Klebanov, 1985; Callan et al., 1988), 

F2 F2 m~ Tr(U + U ÷ - 2) = -]-g Tr O~U aCU + + - ~  

_ 1 (F } _ F2 ) Tr(1 - v/3Xs)(U O¢U a~'U + + o~U o~U+U +) 
48 

1 2 2  2 2  
- -  - F ~ m ~ )  - - 2)  (3 .1)  + 24 (Fkmt¢ Tr(l ,,/~hs)(U + U ÷ 

where m~ and mK are pion and kaon masses, respectively, and Fx is the kaon 
week-decay constant with the empirical ratio to pion decay constant Fx/F~ 
~- 1.23. The first term in (3.1) is the usual or-model Lagrangian, while the 
remaining three terms are all chiral- and flavor-symmetry-breaking terms, 
present in the mesonic sector of the model. All flavor-symmetry-breaking 
terms in the effective Lagrangian (3.1) also break the chiral symmetry, just 
as quark-mass terms do in the underlying QCD Lagrangian. In addition to 
the action obtained using the Lagrangian (3.1), the Wess-Zumino action in 
the form 

[ S = 240~ 2 dSx e ~'~'t Tr[U+O~U U+a~U U+o,~U U+af~u U+o~U] (3.2) 

must be included in the total action of a dibaryon system, where Nc is the 
number of colors in the underlying QCD. The Wess-Zumino action defines 
the topological properties of the model important for the quantization of the 
solitons. In the SU(2) case the Wess-Zumino action vanishes identically and 
was therefore not present in the discussions of Sections 1 and 2. 

In the present approach the meson-soliton field is written in the form 

U= ~ UK ~ (3.3) 
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where U~ is an SU(3) extension of  the usual SU(2) skyrmion field used to 
describe the nucleon spectrum, and Ux is the field describing the kaons 

U ~ =  [ j  01], U K = e x p { i  23a 

In (3.4) u~ is the usual SU(2)-skyrmion field given by (1.4). The two- 
dimensional vector K in (3.5) is the kaon doublet 

g = K0 , g ÷ = [K- ~0] (3.5) 

We now substitute (3.3), with U~r and UK defined by (3.4), into the total 
action of the kaon-soliton system and expand Ux to second order in kaon 
fields (3.5), to obtain the effective interaction-Lagrangian density for the 
kaon-soliton system, 

c~ = R+K + K+V2K + ih(r)(K+R _ R+IQ _ mZxK+K 

1 - cos F 
- K +. 2 r2 I .  L K  + K+vo(r)K (3.6) 

where L is the kaon orbital momentum and I is the total angular momentum 
of the rotating soliton. The term proportional to I . L  represents the kaon- 
soliton (iso)spin-orbit interaction. In (3.6) we introduced the quantities h(r) 
and vo(r) as follows: 

Arc sin2F dF  
h(r) = 2'rr2F~ r 2 dr (3.7) 

~2 2 2 
l ( d F  cos F (1 - cos F) + F~m~ 

v0 = ~ \-~r} + r 2 ~ (1 -- cos F) (3.8) 

The Hamiltonian density corresponding to the Lagrangian density (3.6) 
is given by 

= I-It/( " + K+FI - ,~ (3.9) 

where 

I-I + = O~£1bR = R + + iX(r)K ÷ (3.10) 

II = 0~£/0R ÷ = R -  ih (r )K (3.11) 

Substituting (3.6), (3.10), and (3.11) into (3.9), we obtain 

= II+II - K + VZK - ih(r)(K+rI - II+K) + mZK+K 

+ K + [  2 1 - c ° s F  ] r2 I - L  - vo(r) K + X2(r)K+K (3.12) 
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The kaon field (3.5) may be decomposed into modes with strangeness number 
S = _ 1 as (Callan and Klebanov, 1985; Callan et al., 1988): 

K = ~, [~,,,(r)ei°~",'[7 + + Km(r)e-it°"'~,"] (3.13) 

with 4," and/~,+, annihilation and creation operators for S = - 1 and S = + 1 
modes, respectively. From (3.12) we obtain the wave equation for the S = 
- 1  mode wave functions K,,,(r) 

V2K,"(r) + [vo(r) - 2 1 -  c°s F ] r2 I ' L  K,"(r) - m~K,"(r) 

+ 2to,"Mr)K,.(r) + toZ.,K,"(r) = 0 (3.14) 

where the commutation rules for creation and annihilation operators in (3.13) 
give the orthonormality condition for wave functions K," in the form 

I d3r [to,. + + 2h(r)]K*Km = ~m, (3.15) ton 

3.2. K a o n  W a v e  Funct ions  

Expanding the kaon wave functions Kin(r) in terms of vector spherical 
harmonics (Callan and Klebanov, 1985; Callan et al., 1988) 

K(r) = ~ k~L(r)Y, iL (3.16) 
ct,L 

we find that the wave equation (3.14) becomes a one-dimensional differential 
equation. The form of interaction makes the P-state (et = 1/2, L = 1) the 
lowest bound state representing A(I 116). The next state is the S-state (ct = 
1/2, L = 0), which represents A(1405). The centrifugal repulsion at short 
distances in the Hamiltonian density (3.12) is canceled when ( I . L )  = - 1 ,  
i.e., for the P-state representing the A(1405) hyperon. For S-wave kaons there 
is no cancellation and their energy is considerably higher than that of  P- 
wave kaons. This S-wave kaon state is thus interpreted as the A(1405) reso- 
nance. The binding force is obtained by leaving out I - L  and L 2 terms and 
it is almost entirely the Wess-Zumino force. The S-state wave function uo(r) 
= rkln.o(r) = rko(r) satisfies the equation 

d2uo 
dr 2 + vo(r)uo + [to~ m2r + 2tooX(r)]uo 0 (3.17) 

where to o is the bound-state energy. By itself the interaction vo(r) is not 
enough to obtain a realistic bound state, and the attractive contribution from 
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the Wess-Zumino term must be taken into account as argued in Dalarsson 
(1993, 1995a-c), Callan and Klebanov (1985), and Callan et al. (1988). 

3.3. The  Rotat iona l  and Total Sol i ton Energ ies  

In order to calculate the hyperon spectrum we must take into account 
the rotational modes of the soliton (Callan and Klebanov, 1985; Callan et 
aL, 1988). The kaon and soliton fields are rotated according to 

K ~ a(t)K (3.18) 

U ---> A(t)UA+(t) 

where 

is an SU(2) subgroup of SU(3). The SU(2) rotation operator A(t) adds extra 
time-derivative terms to the Lagrangian. Introducing the angular velocity 
vector 13 using 

(OoA+)A = i ~ . x  (3.20) 

and the moment of inertia of the soliton ~ = b63, where b is given by (2.8) 
and e by (2.12), we can write the additional Lagrangian (to lowest order in 
the angular velocity 13) in the following way: 

8L = 2~1~ z + [~-f ~1 dSr (3.21) 

Following Dalarsson (1993, 1995a-c), we obtain the energy of the S-state, 
i.e., A(1405) hyperon, as follows: 

3 
E = E0 + tOo + ~ Y0 (3.22) 

where the static soliton energy Eo is, for m~ = 0, given by (2.1) and tOo is 
the bound-state energy eigenvalue for the S state. In (3.22) Y0 is the hyperfine 
splitting constant and its explicit form can easily be obtained from the general 
expressions found for F~c/F~ ~ 1 in Dalarsson (1993, 1995a-c) and for FK/ 
F~ = 1.23 in Rho et aL (1992). 

Applying now the constant-cutoff stabilization procedure (Dalarsson, 
1993, 1995a-c), we obtain for the energy of the A(1405) hyperon 

4 [9a 3 yo) TM (3.23) 
E = tOo + ~ \ 8 b  
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Table I. Numerical Results for the A(1405)-Hyperon Mass in MeV for F,, = 186 MeV, 
F~ = 150 MeV, and FK/F~ = 1.23 

E E 
Hyperon (F~ = 186 MeV) (F~ = 150 MeV) M~xp 

A* 1433 1350 1405 

The numerical results for the energy of the A(1405) hyperon for F,~ = 
186 MeV, F~ = 150 MeV, and Fx/F~ = 1.23 are shown in Table I. 

From Table I we see that, as in the case of the A(1116) hyperon (Dalars- 
son, 1993, 1995a-c), we have good agreement with the empirical mass of 
the A(1405) hyperon. A better result is obtained with F~ = 186 MeV, similar 
to the case of the A(Il16) hyperon (Dalarsson, 1993, 1995a-c), but in 
contrast to the case of nucleons. Furthermore, our results are in slightly better 
agreement with the empirical value than are those obtained using the complete 
Skyrme model in Schat et al. (1995). 

3.4. Strong Couplings of A(1405) Hyperon 

The strong coupling of A(1405) to the KN channel is dominant in the 
analysis of processes like K-p -+ A~/and K-p -+ ~o~. The coupling constant 
gA,xp can be calculated using the constant-cutoff approach to the bound-state 
soliton model, by projection of the soliton and kaon degrees of freedom onto 
states with proper (iso)spin. Following the general approach of Gobbi et al. 
(1992) and using the projection identities 

- i  
(A* IA+INK) - (8,rr)l/2 (A*I - 1  INK) (3.24) 

- i  
(A* I'rA+INK) - (8,rr)l/z (A* I -o ' INK) (3.25) 

we obtain the following result: 

gA*~U _ l r 2 dr k~(r)[rnKa~ o + h(r)(m K + ~o) - m~ - vo(r)l 
(4~r) la , /~ 

_ ~ F~mT~ 
v~ ~ - ~  Yo yZ dy ~(y)  mKtoo - m~ + ~ (l - c o s F )  

1(9 ,,,417 ] +---~ ~abYO) dyke(y) yZ(-~y F) + c o s F ( l - c o s F )  

N,. f7  2 , /~2F~  (ink + too) dy kg(y) sin2F dFdy (3.26) 
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where a and b are given by (2.9) and (2.8), respectively. As in Schat et  al. 

(1995), we have assumed the pseudoscalar coupling in the reduction of 
the interaction Lagrangian to the nonrelativistic form. However, if only the 
nonrelativistic form of the interaction Lagrangian is known as in the complete 
Skyrme model (Schat et  al . ,  1995) and here, there is no unique definition of 
gA*KN" The choice of the pseudovector coupling would introduce a factor of 
~0.94, which is not essential for the present qualitative investigation. Numeri- 
cal calculation of equation (3.26) gives gA*XN ~ 1.82, which agrees rather 
well with the analysis of the empirical KN-scattering lengths (Lee e t  al . ,  

1994), where gA*XN ~- 1.9, and with one of the results obtained using 
the complete Skyrme model (CSM) in Schat e t  al. (1995), where gA*XN 

1.6, but it disagrees with a smaller value of gA*XN ~" 0.46 obtained 
using CBM in Umino and Myhrer (1991). Other A(1405) strong couplings 
are related to the A'Ear vertex, but, as in Schat e t  al. (1995), at least 
up to O ( N ° ) ,  gA*~ vanishes. As argued in Schat et  al. (1995), this is 
due to the assumption that the symmetry breaking along the strangeness 
direction is very strong, which is an argument to keep only the quadratic 
terms in the kaon-field fluctuations. 

3.5. Magnetic Moments, Magnetic and Electric Radii 

The electromagnetic properties of the A(1405) hyperon are derived 
entirely from the electromagnetic current J~,, which is obtained from the 
vector current Va~ (a = 1 . . . . .  8) as follows: 

j~m = V3o. + 3-t/2V8~ (3.27) 

The vector current Va~ is obtained as the Noether current associated with the 
symmetry of the total action with respect to the transformation 

U ---> exP(½ieak,) U exp(--½iEaha) (3.28) 

where E a ( a  : 1 . . . . .  8) is the set of eight infinitesimally small Noether 
parameters. As e ~ ---> 0, we obtain from (3.28) 

U ---> U + i e ~ [ k J 2 ,  U] = U + E. a ~ U  a (3.29) 

where [A, B] = A B  - B A .  The Noether current associated with the transforma- 
tion (3.29) is 

= 8S ] Tr[  8S [ ~  ] ]  V,,~ 2 Tr[ 8U~ = 2i U (3.30) 
Ls(a~ Ls(a~u) ' 

where S is the total action of the model. Thus we obtain 
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V~,~ = - i  -~- Tr(h~U + OCU + h~U 3¢U +) 

Nc 
+ 9-6~z %.,~po- Tr(ha U+ OvUU + 3°UU + O'rU 

- h~U OvU+U OPU+U O~U +) (3.31) 

Substituting (3.31) into (3.27), we obtain the expression for the electromag- 
netic current. The spatial part of the electromagnetic current defined by (3.27) 
with (3.31) can be written as the sum of  a transverse and a longitudinal 
component with respect to the direction r0 = r/r. The magnetic moment, on 
the other hand, is defined by the expression 

1 f je , .  = IX = ~ d3r r × I.to + l-tl (3.32) 

and it is determined by the transverse component of the electromagnetic 
current only (Dalarsson, 1993, 1995a-c). In (3.32) lXo and ~l are the isoscalar 
and isovector contributions to the magnetic moment, and since the A(1405) 
hyperon is an isoscalar resonance, only the term quadratic in the kaon fields 
in pro contributes. The explicit results for tto and Ix~ can be found in Dalarsson 
(1993, 1995a-c), and following closely the procedure used there, we obtain 
the expression for the A* magnetic moment in the form 

4 i ~ F tt, A * : ~4 = Cs~, -- "~ MN F2  dr  r2kZo(r) sin 2 -~ 

4 M N F ~  Yo dy y2k~(y) sin 2 -~ = c.d-tl - ~ . (3.33) 

where 

2MN (~ 
Ixl - 3"rr~ J~ dr  r 2 sin2F 

- 37rf~ ~ Yo d y y 2  s in2FdF . dy (3.34) 

cs = 1 - ~ too dr  rZk~(r) sin z F 

l'4f = 1 - ~ too 1Io dy  y2kg(y) sin z F (3.35) 
. 2 
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In Dalarsson (1993, 1995a-c) it was seen that P.l and tx4 are proportional to 
Ix. + ~a and Ix.. respectively, where I~., IXd, and Izs are magnetic moments 
of u-, d-, and s-quarks, respectively. The magnetic mean-square radius is 
then defined by 

MN r 4 dr sinZF dF 
(r~t)A* = 5.rrlxa.f~ c, dr 

+ 2"rrFt r 4 dr k~(r) sin 2 

= --5.rrlzA. b c~ Yo y4 dy sin~-F d_ff_Fdy 

+ 2~b Yo) y4 dy k~(y) sin 2 (3.36) 

where the factor 1/5 instead of 1/3, as in (3.33) and (3.34), comes from the 
normalization of the magnetic form factor in the limit of zero momentum 
transfer (Schat et al., 1995). The electric mean-square radius is given by 

1 {f~r4drsin2FdF 
(r~)A. -- "rr dr 

- ~r  r 4 dr k~(r)[~o + h(r)] 

_ 1 9 y4 dy --dF 
• r ~-b sinzFdy 

( 9 \" f, . 
+ Ie0) y4dy k~(y)[~o + h(y)] (3.37) 

The numerical results for magnetic moments, magnetic mean-square 
radii, and electric mean-square radii are composed to those obtained using 
the complete Skyrme model (CSM) (Schat et al., 1995) in Table II. 

From Table II we see that there is a general qualitative agreement 
between our results and those obtained using the complete Skyrme model in 
Schat et al. (1995). A detailed comparison of the predictions obtained for 
the A(1405) hyperon with those obtained for the A(I 116) hyperon is given 
in Schat et at. (1995) and is generally valid even in the constant-cutoff 
approach here. 
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Table I1. Magnetic Moments (in units of I,~e) and the Electric and Magnetic Mean-Square 
Radii (in fm 2) of A(1405) Hyperon 

Present CSM results" 
results Set 1 Set 2 

IMp-p 0.06 0.08 0.09 
(r~) 0.95 1.14 1.21 
(r-~) -0.07 -0 .09 -0 .12 

"Schatet a1.(1995). 

3.6. Radiative Decay Amplitudes 

The A(1405) hyperon has two radiative decay modes, A* --~ A'y and 
A* ---> E0.y, which are related to the isoscalar and isovector parts of the 
electromagnetic current, respectively. The decay amplitude for these processes 
is of the form 

F = k ~_ ~, I<Jf, J}lt~(k).J(k)lJf,  J}>l 2 (3.38) 
J ~J~, k=+-.l 

where k = t kl is the magnitude of the emitted-photon momentum k, 
= k/k is the unit vector in the direction of the momentum k, e*(k) is the 

emitted-photon polarization tensor, and J(k) is the Fourier transform of the 
electromagnetic current J(r), given by 

JA*H(k) = i[~/~*H(k)T + "yA*t4(k)T. ~ l~] (3.39) 

where H = {A, E0} and 

"v~*n(k) = Ii ° 

+ (3.40) 

r z dr{gA*n(r)jo(kr) 

gA*n(r)[jo(kr) + j2(kr)]} 

with Jo and j2 spherical Bessel functions of zeroth and second order, respec- 
tively, and (9),4 

e = ~ Yo (3.42) 

~A*H(k) = r 2 dr gA*t4(r)j2(kr) (3.41) 
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and 

glA,h(r) = COS____ F kokl ' ko = kl/2,o, hi = kl/2,1 
r 

(3.43) 

dkl dko kl) 
g~*A(r) = --gA*A(r) + ko dr dr (3.44) 

g~.,~O(r ) _ 2 c o s  F - 1 3 glA*A(r) 

2 isio2 ( .k 
97r2F~ L - - ~ r  oaoko-d-Tr - t o , - ~ r  k, 

+ - - - -  dF kokl ( 
o~ 0 cos 2 

dr r 
+ to I s i n 2 ~  + oJ o sinZF (3.45) 

gA,V.O(r ) _ 2 COS F - 1 
3 gA*A(r) 

2N~ [-sin 2 F  ( dkl 
9~r2e~ I _ ~  \t°°~° dr 

- - o~ ~ k~ 

sin 2 F  kokl F 
\ ~r ~ --7- "o cos2~ + ", sin 2 (3.46) 

Using (3 .38)- (3 .46) ,  we  finally obtain 

F(A* ~ A~/) = k l yA*A(k) 12 (3.47) 

F (A*  ~ 2°~)  = k l 7 A*s°(k) 12 (3.48) 

where  we  fol low the s tandard prescript ion (Schat et al., 1995) and take k to 
be the energy difference be tween the initial and final hyperon  states and we 
use the empir ical  value for  this difference k = kemp. In Table III  the numerical  

Table III. Radiative Decay Amplitudes (in keV) for the A(1405) Resonance" 

Present CSM 
results Set I Set 2 QM BM CBM KA 

F(A* --~ Ay) 51 67 56 143 60 75 27 --- 8 
F(A* ~ 5~o.,/) 37 29 29 91 18 2.4 23 +_ 7 or 10 --- 4 

~CSM, complete Skyrme model (Schat et al., 1995); QM, quark model (Darewych et al., 1983); 
BM, MIT bag model (Kaxiras et al., 1985); CBM, cloudy bag model (Umino and Myhrer, 
1991); KA, empirical analysis of kaonic atom decays (Burkhardt and Lowe, 1991). 
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results are compared with those obtained using the complete Skyrme model 
(CSM) (Schat et al., 1995) quark model (QM) (Darewych et al., 1983), MIT 
bag model (BM) (Kaxiras et al., 1985), and cloudy bag model (CBM) (Umino 
and Myhrer, 1991) and with the available empirical analysis of kaonic atom 
decays (KA) (Burkhardt and Lowe, 1991). 

From Table III we see that the present results are of the same order of 
magnitude as the results obtained by other means and there is a general 
qualitative agreement with both CSM results (Schat et al., 1995) and KA 
results. It should, however, be noted that the KA results (Burkhardt and 
Lowe, 1991) are obtained using the uncertain value gA*KN = 3.2 for the 
strong coupling constant as an input parameter. Using the smaller value 
obtained here or in CSM (Schat et al., 1995) would improve the agreement, 
as argued in Schat et al. (1995). 

4. CONCLUSIONS 

The A(1405) resonance is one of the most poorly understood light- 
baryon states and in most quark-model calculations its rather low mass is 
not easy to describe (Schat et al., 1995). In the present paper we used the 
constant-cutoff approach to the bound-state soliton model to study the strong 
and electromagnetic properties of the A(1405) hyperon. We have calculated 
the strong coupling constant gA*NK, the magnetic moment of A*, the mean 
square radii, and the radiative decay amplitudes. 

Whenever possible we have compared the present results with those 
obtained using other models, e.g., the complete Skyrme model (Schat et al., 
1995), quark model (QM) (Darewych et al., 1983), MIT bag model (BM) 
(Kaxiras et al., 1985), and cloudy bag model (CBM) (Umino and Myhrer, 
1991) and with the available empirical analysis of kaonic atom decays (KA) 
(Birkhardt and Lowe, 1991). We have shown that there is a general qualitative 
agreement between our results and the results of other models and available 
empirical data, except for the A*-rrE coupling, which, as in the case of the 
complete Skyrme model, vanishes in the second-order approximation of the 
kaon fluctuations used here. 

On the other hand, the constant-cutoff approach employed in this paper 
offers a much simpler analytical structure of the results and less complicated 
calculations for all the quantities which describe the strong and electromag- 
netic properties of hyperons (Dalarsson, 1993, 1995a-c). 

Finally, it should be noted that the empirical values for most of the 
calculated quantities are unfortunately difficult to determine. As argued in 
Schat et al. (1995) better empirical information about the A(1405) resonance 
is needed in order to determine the quality of predictions of different models. 
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S o m e  expe r imen t s  to that effect  are be ing  p repared  at severa l  exper imenta l  
faci l i t ies  (Schat  et  al., 1995, and  references  therein) .  

R E F E R E N C E S  

Adkins, G. S., Nappi, C. R., and Witten, E. (1983). Nuclear Physics B, 228, 552. 
Balakrishna, B. S., Sanyuk, V., Schechter, J., and Subbaraman, A. (1991). Physical Review D, 

45, 344. 
Bhadhuri, R. K. (1988). Models of  the Nacleon, Addison-Wesley, Reading, Massachusetts. 
Burkhardt, H., and Lowe, J. (1991). Physical Review C, 44, 607. 
Callan, C. G., and Klebanov, I. (1985). Nuclear Physics B, 262, 365. 
Callan, C. G., Hornbostel, K., and Klebanov, I. (1988). Physics Letters B, 202, 269. 
Dalarsson, N. (1991a). Modern Physics Letters A, 6, 2345. 
Dalarsson, N. (199tb). Nuclear Physics A, 532, 708. 
Dalarsson, N. (1992). Nuclear Physics A, 536, 573. 
Dalarsson, N. (1993). Nuclear Physics A, 554, 580. 
Dalarsson, N. (1995a). International Journal of Theoretical Physics, 34, 81. 
Dalarsson, N. (1995b). International Journal of  Theoretical Physics, 34, 949. 
Dalarsson, N. (1995c). International Journal of Theoretical Physics, 34, 2129. 
Darewych, J. W, Horbatsch, M., and Koniuk, R. (1983). Physical Review D, 28, 1125. 
Gobbi, C., Riska, D. O., and Scoccola, N. N. (1992). Nuclear Physics A, 544, 343. 
Holzwarth, G., and Schwesinger, B. (1986). Reports on Progress in Physics, 49, 825. 
lwasaki, M., and Ohyama, H. (1989). Physical Review, 40, 3125. 
Jain, P., Schechter, J., and Sorkin, R. (1989). Physical Review D, 39, 998. 
Kaxiras, E., Moniz, E. J., and Soyeur, M. (1985). Physical Review D, 32, 695. 
Lee, C. H., Jung, H., Min, D. P., and Rho, M. (1994). Physics Letters B, 326, 14. 
Mignaco, J. A., and Wulck, S. (1989). Physical Review Letters, 62, 1449. 
Nyman, E. M., and Riska, D. O. (1990). Reports on Progress in Physics, 53, 1137. 
Rho, M., Riska, D. O., and Scoccola, N. N. (1992). Zeitschriftfiir Physik A, 341, 343. 
Schat, C. L., Scoccola, N. N., and Gobbi, C. (1995). Nuclear Physics A, 585, 627. 
Skyrme, T. H. R. (1961). Proceedings of  the Royal Society A, 260, 127. 
Skyrme, T. H. R. (1962). Nuclear Physics, 31,556. 
Umino, Y., and Myhrer, E (1991). Nuclear Physics A, 529, 713. 
Witten, E. (1979). Nuclear Physics B, 160, 57. 
Witten, E. (1983a). Nuclear Physics B, 223, 422. 
Witten, E. (1983b). Nuclear Physics B, 223, 433. 


